\qquad

Chemical Equilibrium:

Chemical Reactions reach a state of dynamic equilibrium in which "The rate of the forward and reverse reaction are equal" and there is no net change in composition.

Reversible Reactions

Consider the following reaction in the gas phase:

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \leftrightarrows \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

Let's graph the reaction rates:

Let's graph the concentrations:
\qquad

Le Chatelier's Principle

When a system at equilibrium is subjected to a stress, the equilibrium will shift to relieve the stress. What is a stress?

Consider adding and removing certain species.

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \leftrightarrows \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

Which direction does the equilibrium shift if we:
a) Add CO
b) Add water
c) Add carbon dioxide
d) Remove Hydrogen gas
e) Remove CO

Consider changing things other than the concentrations of reactants and products.

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrows 2 \mathrm{NH}_{3}(\mathrm{~g})+\text { Energy }
$$

a) The volume is increased
b) The pressure is decreased
c) The temperature is increased
d) The system is compressed
e) It is placed into an ice bath
f) A catalyst is added
\qquad

A classic example of Le Chatelier's Principle is the iron (III) thiocyante equilibrium:

$$
\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{SCN}^{-}(\mathrm{aq}) \leftrightarrows \mathrm{FeSCN}^{2+}(\mathrm{aq})
$$

By starting with a dilute solution of $\mathrm{Fe}^{3+}(\mathrm{aq})$ and adding a drop or two of $\mathrm{SCN}^{-}(\mathrm{aq})$ you get a "Brick Red" solution. The equilibrium system can be "Stressed" by adding solutions that contain common ions.

Laboratory Data

Solution Added	What two ions are in this solution?	Did it get darker or lighter?	How does the [FeSCN^{2+}] Change?	What ion caused the change?
FeCl_{3}		Darker		
KSCN		Darker		
NaSCN		Darker		
NaCl		Little Change		
$\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$		Darker		
$\mathrm{NH}_{4} \mathrm{NO}_{3}$		Little Change		
$\mathrm{Na}_{2} \mathrm{CO}_{3}$		Substantially Lighter		
KBr		Little Change		
$\mathrm{NH}_{4} \mathrm{SCN}$		Darker		
NaOH		Substantially Lighter		
CaCl_{2}		Substantially Lighter		

What are the spectator ions?

How does solubility play a role in this?
\qquad

Classic Equilibrium Demonstrations

Consider the reaction:

$$
2 \mathrm{NO}_{2}(\mathrm{~g}) \leftrightarrows \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})
$$

We have seen previously that $\mathrm{N}_{2} \mathrm{O}_{4}$ is a dimer held together with a bond between two NO_{2} molecules. NO_{2} is brown and $\mathrm{N}_{2} \mathrm{O}_{4}$ is clear.

Draw a picture of two beakers:

Is this reaction exothermic or endothermic as written above?

Now consider the reaction of Cobalt Chloride

$$
\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}(\mathrm{aq})+4 \mathrm{Cl}^{-}(\mathrm{aq}) \leftrightarrows \mathrm{CoCl}_{4}^{2-}(\mathrm{aq})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Draw a picture of three beakers:

Is this reaction exothermic or endothermic as written above?
\qquad

Equilibrium Constants

What is an equilibrium constant?

How do you write an equilibrium constant?
$\mathrm{aA}(\mathrm{g})+\mathrm{bB}(\mathrm{g}) \leftrightarrows \mathrm{cC}(\mathrm{g})+\mathrm{dD}(\mathrm{g})$

What is included in an equilibrium constant?

Why not solids and pure liquids? What is the physical difference?

Rate Laws

What are the special cases of the equilibrium constant?
$\begin{array}{llllllll}\mathrm{K}_{\text {eq }} & \mathrm{K}_{\mathrm{c}} & \mathrm{K}_{\mathrm{p}} & \mathrm{K}_{\mathrm{a}} & \mathrm{K}_{\mathrm{b}} & \mathrm{K}_{\mathrm{w}} & \mathrm{K}_{\text {sp }} & \mathrm{K}_{\mathrm{f}}\end{array}$
\qquad

Write the equilibrium constant expression for the following reactions:

1) $2 \mathrm{NO}_{2}(\mathrm{~g}) \leftrightarrows \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$
$\mathrm{K}_{\mathrm{eq}}=$
2) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \leftrightarrows 2 \mathrm{HI}(\mathrm{g})$
$\mathrm{K}_{\mathrm{eq}}=$
3) $\mathrm{SO}_{3}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \leftrightarrows \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$\mathrm{K}_{\mathrm{eq}}=$
4) $\mathrm{PCl}_{5}(\mathrm{~g}) \leftrightarrows \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
$\mathrm{K}_{\mathrm{eq}}=$
5) $6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrows \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})+6 \mathrm{O}_{2}(\mathrm{~g})$
$\mathrm{K}_{\mathrm{c}}=$
6) $\mathrm{HCN}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrows \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{g})+\mathrm{CN}^{-}(\mathrm{aq})$
$\mathrm{K}_{\mathrm{a}}=$
7) $\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrows \mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
$\mathrm{K}_{\mathrm{b}}=$
8) $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrows \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
$\mathrm{K}_{\mathrm{w}}=$
9) $\mathrm{AgCl}(\mathrm{s}) \leftrightarrows \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$
$\mathrm{K}_{\mathrm{sp}}=$
10) $\mathrm{AsF}_{5}(\mathrm{~g}) \leftrightarrows \mathrm{AsF}_{3}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g})$
$\mathrm{K}_{\mathrm{p}}=$
11) $\mathrm{Ag}^{+}(\mathrm{aq})+2 \mathrm{NH}_{3}(\mathrm{aq}) \leftrightarrows \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}(\mathrm{aq})$
$\mathrm{K}_{\mathrm{f}}=$
\qquad

How do you calculate an equilibrium constant?
Calculate the equilibrium constants for the following reactions:
$2 \mathrm{NO}_{2}(\mathrm{~g}) \leftrightarrows \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$

Experiment	$\left[\mathrm{NO}_{2}\right]$	$\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$
1.	0.052	0.595
2.	0.024	0.127
3.	0.068	1.02

Show work here
$\mathrm{K}_{1}=$
$\mathrm{K}_{2}=$
$\mathrm{K}_{3}=$
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrows 2 \mathrm{NH}_{3}(\mathrm{~g})$

Experiment	$\left[\mathrm{N}_{2}\right]$
1.	0.921
2.	0.399
3.	2.59

Show work here
$\mathrm{K}_{1}=$
$\mathrm{K}_{2}=$
$\mathrm{K}_{3}=$

Show answers here
$=$
$=$
$=$
[H_{2}]
0.763
1.197
2.77
$K=$
$\left[\mathrm{NH}_{3}\right]$
0.157
0.203
1.82

Show answers here
$=$
=
$=$
\qquad

Manipulating the equilibrium constant

1) For the following reaction:
$\mathrm{Br}_{2}(\mathrm{~g}) \leftrightarrows 2 \mathrm{Br}(\mathrm{g})$

$$
\mathrm{K}_{\mathrm{p}}=2250
$$

Write the following reactions and their equilibrium constants:
Reverse Reaction

Twice the forward reaction

Half the forward reaction
2) Give numerical values for K in the following situations dealing with:

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g}) \leftrightarrows 2 \mathrm{HF}(\mathrm{~g}) \quad \mathrm{K}=100
$$

a. $2 \mathrm{HF}(\mathrm{g}) \leftrightarrows \mathrm{H}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g})$
a. \qquad
b. $4 \mathrm{HF}(\mathrm{g}) \leftrightarrows 2 \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{~F}_{2}(\mathrm{~g})$
b. \qquad
c. $\mathrm{HF}(\mathrm{g}) \leftrightarrows 1 / 2 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{~F}_{2}(\mathrm{~g})$
c. \qquad
d. $2 \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{~F}_{2}(\mathrm{~g}) \leftrightarrows 4 \mathrm{HF}(\mathrm{g})$
d. \qquad
e. $3 \mathrm{H}_{2}(\mathrm{~g})+3 \mathrm{~F}_{2}(\mathrm{~g}) \leftrightarrows 6 \mathrm{HF}(\mathrm{g})$
e. \qquad
3) Consider the following reactions:
$2 \mathrm{BrCl}(\mathrm{g}) \leftrightarrows \mathrm{Br}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
$K=0.45$
$2 \operatorname{IBr}(\mathrm{~g}) \leftrightarrows \mathrm{Br}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$
$\mathrm{K}=20$

Find the equilibrium constant for:
$2 \mathrm{BrCl}(\mathrm{g})+\mathrm{I}_{2}(\mathrm{~g}) \leftrightarrows 2 \operatorname{IBr}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
$\mathrm{K}=$?
\qquad

K_{p} versus K_{c}

Let's think about how we measure the concentration using the ideal gas law.

Now apply this to the idea of equilibrium constants:

Consider the reaction:

$$
2 \mathrm{NaHCO}_{3}(\mathrm{~s}) \leftrightarrows \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})
$$

In an isolated flask the total pressure of the equilibrium mixture at $110^{\circ} \mathrm{C}$ is 1.648 atm . What is the value of K_{p} and K_{c} for this reaction?

The Reaction Quotient

\qquad

Solving Equilibrium Problems

Steps to solving an equilibrium problem.
1)
2)
3)
4)
5)
6)
7)

The Quadratic Equation.
For an equation of the form:
$a x^{2}+b x+c=0$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

1) For the reaction:

$$
\mathrm{A} \leftrightarrows \mathrm{~B}+\mathrm{C}
$$

the equilibrium constant is 3.0×10^{-6}. What is the concentration of B at equilibrium if A was originally 0.10 M ?
\qquad

ICE Boxes
2) The K_{a} for the reaction of HCN in water is 6.3×10^{-10}, as in the following reaction:

$$
\mathrm{HCN}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrows \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{CN}^{-}(\mathrm{aq})
$$

What is the concentration of cyanide ion at equilibrium if you start with 0.100 M HCN ?
3) For the reaction of acetic acid in water the K_{eq} is 1.75×10^{-5}. What is the remaining concentration of acetic acid if the original concentration was 0.10 M ?

$$
\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrows \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}(\mathrm{aq})
$$

4) If a 0.10 M solution of an acid HA has an $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$of 4.0×10^{-4} what is the equilibrium constant Ka for the reaction?

$$
\mathrm{HA}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrows \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq})
$$

\qquad
K_{p} and K_{c}
5) An equilibrium mixture contains oxygen gas at 2.9 atm and carbon dioxide at 2.6 atm .

$$
\mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrows \mathrm{CO}_{2}(\mathrm{~g})
$$

Calculate K_{p} and K_{c} at for this system at 289 Kelvin.
6) Given
$\mathrm{Br}_{2}(\mathrm{~g}) \leftrightarrows 2 \mathrm{Br}(\mathrm{g})$

$$
\mathrm{K}_{\mathrm{p}}=2250
$$

Find the value of K_{c} at 2000 K .
7) What is the ratio of $\mathrm{K}_{\mathrm{c}} / \mathrm{K}_{\mathrm{p}}$ for the reaction at $25^{\circ} \mathrm{C}$:

$$
\mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrows \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})
$$

\qquad

Reaction Quotients

8) For the equilibrium system:

$$
2 \mathrm{NO}_{2}(\mathrm{~g}) \leftrightarrows \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})
$$

the equilibrium constant is 170 at room temperature. Assume a 1.00 liter container contains 0.005 moles of nitrogen dioxide and 0.005 moles of dinitrogen tetroxide. Is this system at equilibrium? Which direction will it shift to reach equilibrium?
9) At some unspecified temperature
$\mathrm{Br}_{2}(\mathrm{~g}) \leftrightarrows 2 \mathrm{Br}(\mathrm{g})$

$$
\mathrm{K}_{\mathrm{c}}=150
$$

Which way will the system shift to achieve equilibrium if the concentration of Br is 0.100 M and the concentration of Br_{2} is also 0.100 M ?
10) For the reaction
$2 \mathrm{BrCl}(\mathrm{g}) \leftrightarrows \mathrm{Br}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \quad \mathrm{K}=0.45$
Which way will the equilibrium shift if you start with $\left[\mathrm{Br}_{2}\right]=\left[\mathrm{Cl}_{2}\right]=0.0100 \mathrm{M}$ and $[\mathrm{BrCl}]=10.0 \mathrm{M}$?
\qquad
11)

$$
\mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \leftrightarrows 2 \mathrm{HCl}(\mathrm{~g})
$$

For the reaction above, the value of the equilibrium constant, K_{p} is 193 at 2500 . K.
a) Write the expression for the equilibrium constant K_{p}, for the reaction.
b) Assume the initial partial pressures of the gases are as follows:
$\mathrm{P}_{2}=0.766 \mathrm{~atm}, \mathrm{P} \mathrm{Cl}_{2}=0.393 \mathrm{~atm}$, and $\mathrm{P} \mathrm{HCl}=0.921 \mathrm{~atm}$
(i) Calculate the value of the reaction quotient, Q , at these initial conditions.
(ii) Predict the direction in which the reaction will proceed at $2500 . \mathrm{K}$ if the initial partial pressures are those given above. Justify your answer.
c) The value of K_{p} for the reaction represented below is 1.5×10^{3} at $2500 . \mathrm{K}$.

$$
\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{~g}) \leftrightarrows \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{~g})
$$

Calculate the value of K_{p} at 2500 . K for each of the reactions represented below:
(i) $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{g}) \leftrightarrows \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g})$
(ii) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{NH}_{3}(\mathrm{~g}) \leftrightarrows 2 \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{g})$

