Liquids and Solids

What is the difference between a solid, a liquid, and a gas?

What happens when a substance melts?

What happens when a substance boils?

What does not happen when a substance undergoes a phase change?

Let's look at water:

$$\mathrm{H_2O}(s) \to \mathrm{H_2O}(l)$$

$$\Delta H^{\circ}_{\ fusion}$$

$$= 6.02 \text{ kJ/mole}$$

$$H_2O(1) \rightarrow H_2O(g)$$

$$\begin{array}{ll} \Delta H^{^{\circ}}_{\;\;fusion} &= 6.02\;kJ/mole \\ \Delta H^{^{\circ}}_{\;\;vaporization} = 40.7\;kJ/mole \end{array}$$

What determines the melting/boiling point of a substance

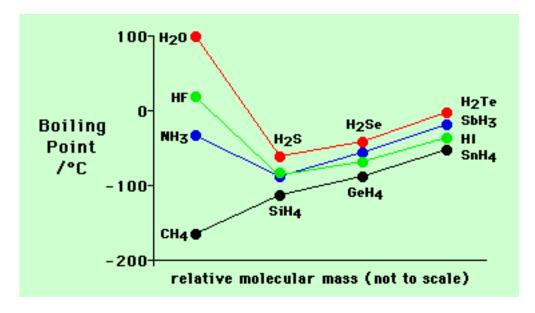
•	
What are the differences between intermed	olecular and intramolecular forces?
Intermolecular Forces	
Intermolecular Forces	
1)	
2)	
2)	

What do we mean by the term Van der Waals Forces?

London Dispersion Forces

3)

The Halogen Family


Dipole-Dipole Forces

The worst name in all of chemistry.

Hydrogen Bonding

What must the structure be like for hydrogen bonding to occur?

The Boling Points Graph

Structural Effec	ts on Intermol	ecular Forces
> 11 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

 H_2O

HF

 C_2H_5OH

 CH_3OCH_3

CH₃COCH₃

 CH_3CHO

 C_5H_{12} (multiple isomers)

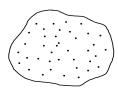
What is a Liquid?

Surface Tension

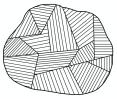
Capillary Action

Cohesive Forces

Adhesive Forces


Viscosity

What is a solid?


What are the different types of solids?

Crystalline

Amorphous

Polycrystalline

Some Examples of Solids:

Substance	Examples	Particles Present	Major Inter-particle Forces

Properties of Crystalline Solids

Ionic

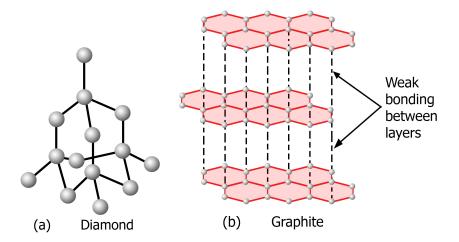
Molecular

Atomic

Metals

Metallic Bond

Electron Sea Model


Alloys

Substitutional "Brass"

Interstitial "Steel"

Network Atomic Solids

Allotropes

The Liquid State Vapor Pressure

Vapor Pressure and Intermolecular Forces

Vapor Pressure and Temperature (the Ice Cream Graph returns)

Change in State

Date	
Date	

Measuring Vapor Pressure

$$H_2O(1) \rightarrow H_2O(g)$$

$$\Delta H^{\circ}_{vaporization} = 40.7 \text{ kJ/mole}$$

Barometers

Vapor Pressure as a function of temperature

Now graph it as a straight line

Clausius-Claperyon Equation

1) The vapor pressure of water at 10.0°C is 9.209 torr. The vapor pressure at 60.0°C is 149.4 torr. What is the heat of vaporization for water?

2) Find the vapor pressure of water at 50.0°C knowing that the heat of vaporization is 40.7 kJ/mole and using other common knowledge.

3) The atmospheric pressure on the summit of Mount Everest is 240 torr. What is the boiling point of water at this elevation if the heat of vaporization is 40.7 kJ/mole?

Heating Curves

Normal Boiling Point

The temperature at which the vapor pressure of the liquid is exactly one atmosphere.

Normal Melting Point

The temperature at which the solid and the liquid states have the same vapor pressure under conditions where the total pressure is one atmosphere.

Phase Diagrams

For Water!

For Carbon Dioxide and everything else.

mperature

The temperature above which the vapor cannot be liquefied no matter what pressure is applied.

Critical Pressure

The pressure required to produce liquefaction at the critical temperature

Critical Point

Triple Point

Super Cooling and Super Heating

Location	Altitude (feet)	Atmospheric Pressure (torr)	Boiling Point of Water