Name	Period	
	Honors Chemistry Stoichiometry Practice Test	F D
1. The production of hy	ydrochloric acid can be attained by the following	Form P g reaction:
H ₂ S	$SO_4(l) + \underline{\hspace{1cm}} NaCl(s) \rightarrow \underline{\hspace{1cm}} HCl(g) + \underline{\hspace{1cm}} NaHSO$	₄ (s)
a. How many grams of	HCl can be produced by the reaction of 100.0 g	; NaCl?
b. How many grams of	HCl can be produced by $100.0 \text{ g of H}_2\text{SO}_4$?	a
c. Who is the limiting 1	reactant?	b c
d. How much H_2SO_4 is	left after the reaction?	
e. If 35.10 grams of HO	Cl is actually produced what is the percent yield	d ? e
2. During certain indus by precipitation. One p	trial processes you must remove excess mercury ossible reaction is:	
_	$_{Hg(NO_3)_2} + _{Na_2S} \rightarrow _{HgS} + _{NaNO_3}$	
a. Balance the equation	in the spaces provided.	
b. How much HgS can	be formed from 50.00 mL of 0.100M Hg(NO ₃) ₂	2?
c. How much HgS can	be formed from 20.00 mL of 0.100M Na ₂ S?	b
d. What is the excess re	eactant?	c
e. How much of the ex	cess reactant is left over? Answer in grams.	d

e. _____

3. HCN gas and liquid Water are produced be methane(CH ₄).	y the reaction of ammonia, oxygen gas and	
a. Write a balanced equation for the reaction	:	
b. How much HCN can be made by the reac	tion of 35.00 g of ammonia?	
	b	
c. How much HCN can be made by the react	tion of 35.00 g of Methane?	
	C	
d. Which is the limiting reactant if you have	excess oxygen?	
	d	
e. What is the percent yield if you actually g	et 53.22 g of HCN?	
	e	
4. Caffeine is a stimulant that is considered to be highly addictive and a potential risk for heart attack if used in excess. It has a molecular weight of 194 grams per mole. Analysis shows that caffeine contains 49.5% carbon, 5.2% hydrogen, 28.8% nitrogen, and some oxygen. What are the empirical and molecular formulas of caffeine?		
5. The compound CrSO ₄ * XH ₂ O is analyzed was obtained:	d by heating in a crucible. The following data	
Mass of empty crucible Mass of crucible and hydrate Mass after complete heating What is the value of X in the formula?	40.000 g 41.912 g 41.032 g	