Name \qquad Period \qquad

Honors Chemistry
 Stoichiometry Practice Test

1. The production of hydrochloric acid can be attained by the following reaction:

$$
\ldots \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{l})+\ldots \mathrm{NaCl}(\mathrm{~s}) \rightarrow \ldots \mathrm{HCl}(\mathrm{~g})+\ldots \mathrm{NaHSO}_{4}(\mathrm{~s})
$$

a. How many grams of HCl can be produced by the reaction of 100.0 g NaCl ?
a. \qquad
b. How many grams of HCl can be produced by 100.0 g of $\mathrm{H}_{2} \mathrm{SO}_{4}$?
b. \qquad
c. Who is the limiting reactant?
c. \qquad
d. How much $\mathrm{H}_{2} \mathrm{SO}_{4}$ is left after the reaction?
d. \qquad
e. If 35.10 grams of HCl is actually produced what is the percent yield?
e. \qquad
2. During certain industrial processes you must remove excess mercury from a solution by precipitation. One possible reaction is:

$$
\ldots \mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}+\ldots \mathrm{Na}_{2} \mathrm{~S} \rightarrow \ldots \mathrm{HgS}+\ldots \mathrm{NaNO}_{3}
$$

a. Balance the equation in the spaces provided.
b. How much HgS can be formed from 50.00 mL of $0.100 \mathrm{M} \mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}$?
b. \qquad
c. How much HgS can be formed from 20.00 mL of $0.100 \mathrm{M} \mathrm{Na}_{2} \mathrm{~S}$?
d. What is the excess reactant?
c. \qquad
d. \qquad
e. How much of the excess reactant is left over? Answer in grams.
e. \qquad
3. HCN gas and liquid Water are produced by the reaction of ammonia, oxygen gas and methane $\left(\mathrm{CH}_{4}\right)$.
a. Write a balanced equation for the reaction:
b. How much HCN can be made by the reaction of 35.00 g of ammonia?
b. \qquad
c. How much HCN can be made by the reaction of 35.00 g of Methane?
\qquad
d. Which is the limiting reactant if you have excess oxygen?
d. \qquad
e. What is the percent yield if you actually get 53.22 g of HCN ?
e. \qquad
4. Caffeine is a stimulant that is considered to be highly addictive and a potential risk for heart attack if used in excess. It has a molecular weight of 194 grams per mole. Analysis shows that caffeine contains 49.5% carbon, 5.2% hydrogen, 28.8% nitrogen, and some oxygen. What are the empirical and molecular formulas of caffeine?
5. The compound $\mathrm{CrSO}_{4} * \mathrm{XH}_{2} \mathrm{O}$ is analyzed by heating in a crucible. The following data was obtained:
Mass of empty crucible $\quad 40.000 \mathrm{~g}$
Mass of crucible and hydrate $\quad 41.912 \mathrm{~g}$
Mass after complete heating 41.032 g

What is the value of X in the formula?

